Font Size: a A A

Nonlinearities of polymethine and squarylium molecules for optical limiting

Posted on:1999-11-27Degree:Ph.DType:Dissertation
University:University of Central FloridaCandidate:Lim, Jin HongFull Text:PDF
GTID:1461390014472306Subject:Physics
Abstract/Summary:
Optical limiting, a process that reduces transmittance at high laser input energies (irradiance, fluence), is of interest in applications where sensitive optical components, e.g. detectors, are vulnerable to damage by the laser beam. Polymethine and squarylium dyes show strong reverse saturable absorption (RSA) at 532 nm. RSA is a process by which weak linear absorption populates excited states which subsequently absorb strongly. Thus, low inputs are transmitted while high inputs are absorbed. This nonlinear absorption is determined by the ground and excited-state absorption cross sections as well as excited state lifetimes of the molecular system.; We characterized a series of polymethine and squarine molecules in ethanol and polyurethane acrylate polymeric host (PUA) using Z-scan and pump-probe techniques at the second harmonic of the Nd:YAG laser system. A comparison of the properties in these two hosts is made. Some of these dyes show a large ratio of excited to ground state absorption cross section, ≈200, which is larger than any previously reported values. In order to determine the wavelength dependence of the nonlinearities of these molecules, we also performed Z-scan and pump-probe experiments at wavelengths from 440 to 650 nm using a picosecond optical parametric oscillator (OPO) which is synchronously pumped by the third-harmonic of a modelocked train of Nd:YAG laser pulses. The OPO is continuously tunable from 400 to 700 nm using two critically phase-matched BBO crystals mounted for walkoff compensation. A polymethine dye in PUA (PD #3), which is one of the best polymethine dyes at 532 nm, shows strong RSA over a broad spectral range from 480 to 620 nm. while a squarylium dye shows RSA over a relatively narrow spectral range from 500 to 560 nm. However, the excited state lifetimes (≈2.5 ns in PUA) are shorter than desirable for good nanosecond optical limiting (10 ns) and at high inputs (≥0.36 J/cm2) the limiting properties are reduced. Extensive measurements of these molecules along with computer modeling indicate that the reduced limiting at high inputs is due to molecular degradation induced after a trans-cis conformational change. Evidence for this and possible methods to eliminate this problem are presented.
Keywords/Search Tags:Optical, Limiting, Polymethine, Molecules, Squarylium, RSA, Laser
Related items