Font Size: a A A

Anaerobic digestion process stability and the extension of the ADM1 for municipal sludge co-digested with bakery waste

Posted on:2017-10-21Degree:Ph.DType:Dissertation
University:Utah State UniversityCandidate:Demitry, Morris ElyaFull Text:PDF
GTID:1461390014952099Subject:Environmental Engineering
Abstract/Summary:
Uncertainty about anaerobic digestion process stability is the main issue preventing more widespread use of the process as a source of energy recovery in wastewater treatment facilities. The overall objective of this research was to study the feasibility of enhancing biogas production inside wastewater facilities using co-digestion of municipal sludge with bakery waste. Another objective was to improve the stability index and a mathematical model that can be useful tools to predict the process stability of municipal sludge digestion alone, and when it is mixed with bakery waste, as a substrate for microorganisms.;Experiments were conducted in three phases. In phase 1, a full-scale anaerobic digester at Central Weber Sewer Improvement District, Ogden, UT, receiving a mixture of primary and secondary sludge, was monitored for one hundred days. Chemical oxygen demand (COD), and volatile solids (VS) mass balances were conducted to evaluate the stability of the digester and its capability of producing methane gas. The COD mass balance accounted for nearly 90% of the methane gas produced while the VS mass balance showed that 91% of the organic matter removed resulted in biogas formation. Other parameters monitored included: pH, alkalinity, VFA, and propionic acid. The values of these parameters showed that the digester was running under stable steady state conditions. At mesophilic temperature, the stability index was determined and equal to (0.40 L (CH 4)/(g(DeltaVS)).;In phase 2, the feasibility of adding BW to MS was tested in batch reactors scale. The biogas production was enhanced and the digester was stable until the range of 37--40% of BW to 63--60% of MS. The ADM1 coefficients were modified to accurately predict the digester performance. The modified model outputs (pH, VFA, and methane) were within acceptable ranges when compared with the observed data from the batch reactors.;In phase 3, the feasibility of MS and BW were tested using an Induced Bed Reactor (IBR) with a 50:50% ratio of MS:BW (COD basis). The process was stable during different hydraulic retention times and the ADM1 was modified to predict the stability of the process in the IBR.
Keywords/Search Tags:Stability, Process, ADM1, Municipal sludge, Anaerobic, Digestion, Bakery
Related items