Font Size: a A A

Mechanical reinforcement and environmental effects on a nylon-6/clay nanocomposite

Posted on:2001-08-16Degree:Ph.DType:Dissertation
University:The University of UtahCandidate:Shelley, J. StebbinsFull Text:PDF
GTID:1461390014952476Subject:Engineering
Abstract/Summary:
Hybridization, or modifying the organic polymers with inorganic constituents, is one method of achieving mechanical property improvements in polymeric materials while preserving processing characteristics. Toyota Central Research developed, and Ube Industries commercialized, one such hybrid nanocomposite: nylon-6/montmorillonite clay. This dissertation explores mechanisms of reinforcement in these nylon-6/clay nanocomposites and studies their degradation by atmospheric pollutants. A 100% improvement in modulus, 77% improvement in yield stress, and 54°C improvement in heat distortion temperature over nylon-6 were observed in extruded 5 wt% clay nanocomposite sheets.; Infrared absorption spectrography and dynamic mechanical analysis were used to investigate the mechanisms of reinforcement in these nanocomposites. The improved mechanical properties, increased heat distortion temperature, reduced diffusion rate, and lower susceptibility to degradation in NO x observed where attributed to constraint of polymer chain motion by interaction with clay lamellae. Changes in the loss tangent peak in the glass transition region of the dynamic mechanical data provide an estimate of the volume of chains constrained by complexation of their mid-chain amide oxygen groups with the charged clay lamellae. X-ray analysis, optical microscopy, and light scattering were used to study changes in crystallization due to this complexation. Photomicrographs indicate that the morphology of the crystallites change from spherulitic to planar with the addition of clay. Decreases in diffusion rates of water and total water absorption were demonstrated in immersion experiments. Complexation of nylon-6 with 5 wt% clay reduces the total absorption of water by over 16%. The plane stress fracture toughness of extruded 5 wt% clay nanocomposite was 46% greater than that of nylon-6. The degradation of the nanocomposites in calcium chloride solution and NOx was examined through post exposure residual tensile and stress cracking experiments. CaCl 2 solution degraded the mechanical responses of the nanocomposite materials in proportion to the amount of water absorbed. NOx exposure degraded the mechanical performance regardless of the constraining effect of clay lamellae and the reduced diffusion rate in the nanocomposites. The stress cracking response of the nanocomposite in NOx (apparently not diffusion driven) resulted in a 650% increase in the time to failure of 5 wt% clay nanocomposites over unmodified nylon-6 for the same normalized stress intensity factor.
Keywords/Search Tags:Clay, Mechanical, Nanocomposite, Nylon-6, Stress, Reinforcement
Related items