Font Size: a A A

Knowledge-based and model-based hybrid methodology for comprehensive waste minimization in electroplating plants

Posted on:2000-04-01Degree:Ph.DType:Dissertation
University:Wayne State UniversityCandidate:Luo, KeqinFull Text:PDF
GTID:1461390014964123Subject:Engineering
Abstract/Summary:
The electroplating industry of over 10,000 planting plants nationwide is one of the major waste generators in the industry. Large quantities of wastewater, spent solvents, spent process solutions, and sludge are the major wastes generated daily in plants, which costs the industry tremendously for waste treatment and disposal and hinders the further development of the industry. It becomes, therefore, an urgent need for the industry to identify technically most effective and economically most attractive methodologies and technologies to minimize the waste, while the production competitiveness can be still maintained.; This dissertation aims at developing a novel WM methodology using artificial intelligence, fuzzy logic, and fundamental knowledge in chemical engineering, and an intelligent decision support tool. The WM methodology consists of two parts: the heuristic knowledge-based qualitative WM decision analysis and support methodology and fundamental knowledge-based quantitative process analysis methodology for waste reduction. In the former, a large number of WM strategies are represented as fuzzy rules. This becomes the main part of the knowledge base in the decision support tool, WMEP-Advisor. In the latter, various first-principles-based process dynamic models are developed. These models can characterize all three major types of operations in an electroplating plant, i.e., cleaning, rinsing, and plating. This development allows us to perform a thorough process analysis on bath efficiency, chemical consumption, wastewater generation, sludge generation, etc. Additional models are developed for quantifying drag-out and evaporation that are critical for waste reduction. The models are validated through numerous industrial experiments in a typical plating line of an industrial partner.; The unique contribution of this research is that it is the first time for the electroplating industry to (i) use systematically available WM strategies, (ii) know quantitatively and accurately what is going on in each tank, and (iii) identify all WM opportunities through process improvement. This work has formed a solid foundation for the further development of powerful WM technologies for comprehensive WM in the following decade.
Keywords/Search Tags:Waste, Electroplating, Methodology, Industry, Knowledge-based
Related items