Font Size: a A A

Extensions to the time lag models for practical application to rocket engine stability design

Posted on:2011-04-23Degree:Ph.DType:Dissertation
University:The Pennsylvania State UniversityCandidate:Casiano, Matthew JFull Text:PDF
GTID:1462390011970321Subject:Engineering
Abstract/Summary:
The combustion instability problem in liquid-propellant rocket engines (LREs) has remained a tremendous challenge since their discovery in the 1930s. Improvements are usually made in solving the combustion instability problem primarily using computational fluid dynamics (CFD) and also by testing demonstrator engines. Another approach is to use analytical models. Analytical models can be used such that design, redesign, or improvement of an engine system is feasible in a relatively short period of time. Improvements to the analytical models can greatly aid in design efforts.;A thorough literature review is first conducted on liquid-propellant rocket engine (LRE) throttling. Throttling is usually studied in terms of vehicle descent or ballistic missile control however there are many other cases where throttling is important. It was found that combustion instabilities are one of a few major issues that occur during deep throttling (other major issues are heat transfer concerns, performance loss, and pump dynamics). In the past and again recently, gas injected into liquid propellants has shown to be a viable solution to throttle engines and to eliminate some forms of combustion instability. This review uncovered a clever solution that was used to eliminate a chug instability in the Common Extensible Cryogenic Engine (CECE), a modified RL10 engine.;A separate review was also conducted on classic time lag combustion instability models. Several new stability models are developed by incorporating important features to the classic and contemporary models, which are commonly used in the aerospace rocket industry. The first two models are extensions of the original Crocco and Cheng concentrated combustion model with feed system contributions. A third new model is an extension to the Wenzel and Szuch double-time lag model also with feed system contributions.;The first new model incorporates the appropriate injector acoustic boundary condition which is neglected in contemporary models. This new feature shows that the injector boundary can play a significant role for combustion stability, especially for gaseous injection systems or a system with an injector orifice on the order of the size of the chamber. The second new model additionally accounts for resistive effects. Advanced signal analysis techniques are used to extract frequency-dependent damping from a gas generator component data set. The damping values are then used in the new stability model to more accurately represent the chamber response of the component. The results show a more realistic representation of stability margin by incorporating the appropriate damping effects into the chamber response from data. The original Crocco model, a contemporary model, and the two new models are all compared and contrasted to a marginally stable test case showing their applicability. The model that incorporates resistive aspects shows the best comparison to the test data. Parametrics are also examined to show the influence of the new features and their applicability. The new features allow a more accurate representation of stability margin to be obtained.;The third new model is an extension to the Wenzel and Szuch double-time lag chug model. The feed system chug model is extended to account for generic propellant flow rates. This model is also extended to incorporate aspects due to oxygen boiling and helium injection in the feed system. The solutions to the classic models, for the single-time lag and the double-time lag models, are often plotted on a practical engine operating map, however the models have presented some difficulties for numerical algorithms for several reasons. Closed-form solutions for use on these practical operating maps are formulated and developed. These models are incorporated in a graphical user interface tool and the new model is compared to an extensive data set. It correctly predicts the stability behavior at various operating conditions incorporating the influence of injected helium and boiling oxygen in the feed system.
Keywords/Search Tags:Stability, Model, Engine, Rocket, Feed system, Lag, Time, Practical
Related items