Font Size: a A A

A progressive damage methodology for residual strength predictions of center-crack tension composite panels

Posted on:1997-12-23Degree:Ph.DType:Dissertation
University:Old Dominion UniversityCandidate:Coats, Timothy WilliamFull Text:PDF
GTID:1462390014480688Subject:Engineering
Abstract/Summary:
An investigation of translaminate fracture and a progressive damage methodology was conducted to evaluate and develop residual strength prediction capability for laminated composites with through penetration notches. This is relevant to the damage tolerance of an aircraft fuselage that might suffer an in-flight accident such as an uncontained engine failure. An experimental characterization of several composite materials systems revealed an R-curve type of behavior. Fractographic examinations led to the postulate that this crack growth resistance could be due to fiber bridging, defined here as fractured fibers of one ply bridged by intact fibers of an adjacent ply.; The progressive damage methodology is currently capable of predicting the initiation and growth of matrix cracks and fiber fracture. Using two different fiber failure criteria, residual strength was predicted for different size panel widths and notch lengths. A ply discount fiber failure criterion yielded extremely conservative results while an elastic-perfectly plastic fiber failure criterion showed that the fiber bridging concept is valid for predicting residual strength for tensile dominated failure loads. Furthermore, the R-curves predicted by the model using the elastic-perfectly plastic fiber failure criterion compared very well with the experimental R-curves.
Keywords/Search Tags:Progressive damage methodology, Residual strength, Fiber failure criterion
Related items