Font Size: a A A

Optimum testing intervals of building emergency power supply systems in tall buildings in the Hong Kong Special Administrative Region

Posted on:2000-05-28Degree:Ph.DType:Dissertation
University:Hong Kong Polytechnic University (People's Republic of China)Candidate:Kwok, Yu FatFull Text:PDF
GTID:1466390014461193Subject:Engineering
Abstract/Summary:
The main objective of this study is to develop a model for the determination of optimum testing interval (OTI) of non-redundant standby plants. This study focuses on the emergency power generators in tall buildings in Hong Kong. The model for the reliability, which is developed, is applicable to any non-duplicated standby plant.; In a tall building, the mobilisation of occupants is constrained by its height and the building internal layout. Occupant's safety, amongst other safety considerations, highly depends on the reliability of the fire detection and protection system, which in turn is dependent on the reliability of the emergency power generation plants.; A thorough literature survey shows that the practice used in determining OTI in nuclear plants is generally applicable. Historically, the OTI in these plants is determined by balancing the testing downtime and reliability gained from frequent testing. However, testing downtime does not exist in plants like emergency power generator. Subsequently, sophisticated models have taken repairing downtime into consideration.; In this study, the algorithms for the determination of OTI, and hence reliability of standby plants, are reconsidered. A new concept is introduced into the subject. A new model is developed for such purposes which embraces more realistic factors found in practice. System aging and the finite life cycle of the standby plant are considered. Somewhat more pragmatic is that the Optimum Overhauling Interval can also be determined from this new model.; System unavailability grow with time, but can be reset by test or overhaul. Contrary to fixed testing intervals, OTI is determined whenever system point unavailability exceeds certain level, which depends on the reliability requirement of the standby system. An optimum testing plan for lowering this level to the 'minimum useful unavailability' level (see section 9.1 for more elaboration) can be determined by the new model presented.; Cost effectiveness is accounted for by a new parameter 'tau min', the minimum testing interval (MTI). The MTI optimises the total number of tests and the total number of overhauls, when the costs for each are available. The model sets up criteria for test and overhaul and to 'announce' end of system life.; The usefulness of the model is validated by a detailed analysis of the operating parameters from 8,500 maintenance records collected for emergency power generation plants in high rise buildings in Hong Kong. (Abstract shortened by UMI.)...
Keywords/Search Tags:Emergency power, Testing, Hong kong, OTI, System, Interval, Building, Model
Related items