Font Size: a A A

I: Hydrodynamic-focusing microreactor II: Mechanically interlocked molecules for functional materials

Posted on:2011-11-03Degree:Ph.DType:Thesis
University:University of California, Los AngelesCandidate:Coti, Karla KarinaFull Text:PDF
GTID:2441390002452183Subject:Chemistry
Abstract/Summary:
I: Microreactors, a class of microfluidics, offer numerous benefits -- such as small sample requirement, short analysis times and automations -- and have been used to study reactions of chemical and biological reagents. In order to understand the relationship between fast mixing, product regioselectivity, as well as the ability to separate, in time and space, the nanoparticle (NP) formation stages, a microreactor capable of fast and controllable mixing was developed (Chapter 1) based on multi-lamination and hydrodynamic-focusing. By taking advantage of the fast and controllable mixing properties of this novel microreactor one can control the time when chemical reactions commence inside the microchannels. These properties of the microreactor can be exploited to improve the product regioselectivity of a diazo-coupling reaction to attain a product distribution of monoazo to diazo product of ∼1:99, a selectivity unprecedented in both conventional, macroscopic reactors and other microfluidic systems. Additionally, the ability to separate different stages during the NP formation process inside the microreactor, allowed us to study the aggregation of polypyrrole NPs.;II: Supramolecular actuators and molecular interlocked molecules, such as catenanes and rotaxanes, have attracted considerable attention because of their sophisticated topology and their application in functional molecular devices. The blending of supramolecular and mechanostereochemistry with mesoporous silica NPs has proven to be a powerful combination, leading to the development of a new class of materials -- mechanized silica nanoparticles ( Chapter 2). These new hybrid materials are designed to release their content in response to an external stimuli and their development is being driven by the need to improve current drug delivery technologies. In an effort to explore how the stimuli-controlled mechanical movement of switchable, bistable [2]rotaxanes -- based on a cyclobis(paraquat-p-phenylene) ring, tetrathiafulvalene and 1,5-dioxynapthalene as the recognition units -- can be exploited to develop new electro-optical liquid crystalline (LC) materials, a novel cholesteric LC bistable [2]rotaxane has been designed (Chapter 3) and its synthesis is underway. Furthermore, the electrochromic behavior of Smectic A LC bistable Rlrotaxanes has been accomplished (Chapter 4) in the condensed LC state as well as within a PMMA polymer matrix.
Keywords/Search Tags:Microreactor, Materials, Chapter
Related items