Font Size: a A A

Nano/micro/meso scale interactions in mechanics of pharmaceutical solid dosage forms

Posted on:2010-05-24Degree:Ph.DType:Thesis
University:Clarkson UniversityCandidate:Akseli, IlgazFull Text:PDF
GTID:2441390002472234Subject:Chemistry
Abstract/Summary:
Oral administration in form tablets has been the most common method for delivering drug to the human systemic blood circulation accurately and reproducibly due to its established manufacturing methods and reliability as well as cost. The mechanical criteria for a successful powder-to-tablet processing are good flowability, compressibility and compactibility that are closely related to the mechanical and adhesion properties of the particles and particle strength. In this thesis, air-coupled acoustic and ultrasonic techniques are presented and demonstrated as noncontact and nondestructive methods for physical (mechanical) integrity monitoring and mechanical characterization of tablets. A testing and characterization experimental platform for defect detection, coating thickness and mechanical property determination of tablets was also developed. The presented air-coupled technique was based on the analysis of the transient vibrational responses of a tablet in both temporal and spectral domains. The contact ultrasonic technique was based on the analysis of the propagation speed of an acoustic pulse launched into a tablet and its reflection from the coat-core interface of the tablet. In defect monitoring, the ultimate objective is to separate defective tablets from nominal ones. In the case of characterization, to extract the coating layer thicknesses and mechanical properties of the tablets from a subset of the measured resonance frequencies, an iterative computational procedure was demonstrated. In the compaction monitoring experiments, an instrumented punch and a cylindrical die were employed to extract the elasticity properties of tablets during compaction. To study the effect of compaction kinetics on tablet properties and defect, finite element analyses of single layer and bilayer tablets were performed. A noncontact work-of-adhesion technique was also demonstrated to determine the work-of-adhesion of pharmaceutical powder particles.
Keywords/Search Tags:Tablets
Related items