Font Size: a A A

Synthesis and Characterization of Magnetite/Zinc Oxide and Magnetite/Zinc Manganese Sulfide Core-Shell Heterostructured Nanoparticles

Posted on:2011-11-19Degree:M.SType:Thesis
University:University of Puerto Rico, Mayaguez (Puerto Rico)Candidate:Beltran Huarac, Juan CarlosFull Text:PDF
GTID:2441390002962877Subject:Physics
Abstract/Summary:
Currently, core-shell heterostructured nanosystems are emerging as next-generation materials due to their potential multifunctionalities in contrast with the more limited single-component counterparts. Systematic investigation of core-shell nanostructures of ZnO and bare-and-doped-Mn2+ ZnS nanocrystals on the surface of magnetite nanoparticles (Fe3O 4) was performed. The magnetite cores were prepared via the co-precipitation method and were next treated with an appropriate surfactant. The Fe3 O4/(S) (S=ZnO and ZnMnS) core-shell nanoparticles were obtained by an aqueous solution method at room temperature. The structural tests were carried out using an x-ray diffractometer (XRD) which showed the development of crystalline phases of cubic Fe3O4, hexagonal ZnO wurtzite and cubic ZnS. These patterns also established the matching between bare and doped-Mn2+ ZnS diffraction peaks. Broadness of the diffraction peaks evidenced the formation of nanosize phases. The transmission electron microscopy (TEM) confirmed the deposition of a semiconductor shell on the surface of superparamagnetic Fe3O4 nanoparticles. The UV-Vis spectra showed the presence of a strong absorption peak and photoluminescence (PL) spectra displayed the emission peak due to excitonic recombination and a very weak defect-related emission peak suggesting the rearrangement of electronic configuration in the core-shell structures when ZnO is surrounding the core. These spectra also displayed the strong emission peak attributed to paramagnetic ion Mn2+ when acted as dopant in the host ZnS structure. The study of the magnetic properties was carried out using a vibrating sample magnetometer (VSM) which evidenced considerable drop in the saturation magnetization of the Fe3O4/ZnO nanoparticles in comparison to individual Fe3O4 ones. For the Fe3O4/ZnMnS system a slight ferromagnetic behavior at room temperature was observed. The chemical composition of these nanomaterials was performed by x-ray photoelectron spectroscopy (XPS). This elemental analysis demonstrated the presence of Zn on the surface of the magnetic seed at an appropriate shell thickness. These core-shell heterostructured nanoparticles are receiving great potential applications in biomedical areas such as photodynamic therapy.
Keywords/Search Tags:Core-shell heterostructured, Nanoparticles
Related items