| As the bidding market develops faster and the market mechanism grows better,the tenderee has a higher request for the bidding proposal, and the bidder is facingincreasing pressure. But there are many suboptimal bidding proposals in the biddingmarket currently. That is because the bidder designs the bidding proposal in anunreasonable way. They usually design a bidding proposal in accordance with themeaning of leadership, and take it to compete against others directly. This kind ofbidding proposal has some problems obviously. It may be good, but not the best.Therefore, to guarantee the high quality of bidding proposal, I propose an idea thatusing a scientific method to assess the bidding proposal. As this method needs manyalternative proposals, so we must design several proposals with high quality inadvance, then use decision-making method to choose the best one to compete for theprocurement project. There are two advantages to use this method to assess thebidding proposal. Firstly, the design of several proposals fully considers the case ofmultiple targets, and avoids the limitations. Secondly, the application of scientificdecision-making method for optimal selection guarantees the accuracy and reliabilityof the selection results.This paper took XX company’s logistics storehouse shelves project asresearching case, assessed the bidding proposal by method for capacity identificationin Choquet integral, and introduced the research process and methods of biddingscheme to the readers in this way. Firstly, we designed a low-end alternative, amedium-end alternative and a high-end alternative for selection. Every alternative hasits design goals, and has its emphasis on competitive advantage. Low-end alternativeis based on “economic rationalityâ€, and has a strong advantage in price. Medium-endalternative is based on “realizableâ€, and has advantages both in technology and price.high-end alternative is based on “advanced technologyâ€, and has a strongadvantage intechnology. Secondly, we built an index system for the selection of the optimal shelf bidding proposal. This index system includes11indexes, and they are productionequipment, technological level, shelf material, weight capacity, service life,dimensional accuracy, delivery time, bid price, maintenance costs, after-sales servicecontent and service time limit. Finally, we used2-additivity capacity to calculate thecapacity value of each set of attributes based on the index system, and used theChoquet integral to calculate the evaluating value of each alternative. TheMedium-end alternative with the highest evaluating value is the optimal shelf biddingproposal at last.The research of bid proposal about XX company’s logistics storehouse shelvesproject has2advantages. It not only assessed a competitive shelf bidding proposaland enhanced the successful probability for A company, but also applied an advanceddecision-making theory to the actual decision-making problem. Whether in the levelof theoretical significance or in the level of practical significance, this paper has madean important achievement. From the theoretical significance level, there is littleapplied research about method for capacity identification in Choquet integral. So thispaper applied the method for capacity identification in Choquet integral and provideda valid reference case for the later learners. It can be a kind of contribution for theapplied research about method for capacity identification in Choquet integral. Fromthe practical significance level, the assessment of bidding proposal generally isdetermined in accordance with a strategy, rarely with the help of decision-makingtheory. So this paper assessed a competitive shelf bidding proposal for the bidder by ascientific decision-making method, ensured the competitive advantage of the biddingproposal, and enhanced the successful probability of A company. This paper created aprecedent for the tender internal self-evaluation, and introduced advanced theoreticalknowledge to evaluation methods. So, this paper has an important effect on assessingbidding proposals for the bidder. |