Font Size: a A A

Experimental study and thermodynamic modelling of the calcium oxide-silicon oxide-aluminum oxide-calcium fluoride system

Posted on:2013-10-22Degree:M.EngType:Thesis
University:McGill University (Canada)Candidate:Kim, Dong-GeunFull Text:PDF
GTID:2451390008988225Subject:Engineering
Abstract/Summary:
Mould flux for the continuous casting process is a major concern for the steelmaking industry. Nowadays, more than 90 % of steel is being produced by the continuous casting process, which requires mould flux as an essential additive. The development of mould flux has been achieved by the conventional trial and error approach since it was first introduced in industry in the 1960s. Recently, the interest on the properties of fluorine has increased a lot since it is reported that fluorine has important functions such as playing a critical role on the crystallization behavior, and decreasing the melting point and viscosity of slag. However, the conventional way to find a suitable mould flux is not efficient to face the increasingly stringent requirements of the continuous casting process such as thin slab casting and higher casting speed. Therefore, fundamental phase diagram study on mould flux systems is clearly necessary, and thermodynamic modeling is the most effective way to design new mould flux in terms of time and money saving. The major components of mould flux, the CaO-SiO2-Al2O 3-CaF2 system, are investigated in this study as these four constituents will mostly affect the largest numbers of properties. Unfortunately, fluorine has high volatility at high temperature and high reactivity with other materials. Therefore, the results of previous experiments on F-containing systems are characterized by large discrepancies due to composition alteration and unexpected reactions during the experiment. As literature data show inconsistent results between each other, key phase diagram experiments were performed in this study. The phase diagram experiments were conducted with the quenching method in sealed Pt capsules to prevent fluorine loss during the experiment. The analyses were performed using a FE-SEM equipped with an EDS system, and a newly developed technique which produces more precise quantitative results for the equilibrium phase composition. The CaO liquidus of the CaO-CaF 2 binary system, which the literature data differ from each other by up to 50 mol %, was confirmed. The CaO solubility in solid CaF2 was found for the first time and reaches about 5 mol % at the eutectic temperature. The liquidus of the CaO-Al2O3-CaF2 and CaO-SiO 2-CaF2 systems were carefully studied and the miscibility gap in the CaO-Al2O3-CaF2 system was proved to be much smaller than that reported in literature. Also, thermal analysis was performed using DSC in a Pt crucible. The eutectic temperatures of the CaO-CaF2 and CaAl2O4-CaF2 systems were successfully measured and the alpha to beta-CaF2 polymorphic transition was confirmed. Based on the new experimental data and reliable literature data, thermodynamic modeling of the CaO-SiO2-Al 2O3-CaF2 system was also carried out. The results of thermodynamic calculation can be very beneficial for new mould flux design.
Keywords/Search Tags:Mould flux, System, Thermodynamic, Continuous casting process, Results
Related items