Font Size: a A A

Photodynamic therapy: Biophysical mechanisms and molecular responses

Posted on:2005-04-30Degree:Ph.DType:Thesis
University:University of RochesterCandidate:Mitra, SoumyaFull Text:PDF
GTID:2454390008994605Subject:Physics
Abstract/Summary:
In photodynamic therapy (PDT), photochemical reactions induced by optical activation of sensitizer molecules cause destruction of the target tissue. In this thesis we present results of several related studies, which investigated the influence of photophysical properties and photobleaching mechanisms of sensitizers and oxygen-dependent tissue optical properties on PDT treatment efficacy.; The bleaching mechanism of the sensitizer meso-tetra hydroxyphenyl chlorin (mTHPC) is examined indirectly using measurements of photochemical oxygen consumption during PDT irradiation of multicell tumor spheroids. Analysis of the results with a theoretical model of oxygen diffusion that incorporates the effects of sensitizer photobleaching shows that mTHPC is degraded via a singlet-oxygen (1O2)-mediated bleaching process. The analysis allows us to extract photophysical parameters of mTHPC which are used to account for its enhanced clinical photodynamic potency in comparison to that of Photofrin.; Evaluation of the spatially-resolved fluorescence in confocal optical sections of intact spheroids during PDT irradiation allows for the direct experimental verification of mTHPC's 1O2-mediated bleaching mechanism. The technique is also used to investigate the complex bleaching kinetics of Photofrin. The results allow us to successfully reconcile apparently contradictory experimental observations and to confirm the predictions of a new theoretical model in which both 1O2 and excited triplet sensitizer molecules are allowed to contribute to photobleaching.; Based on studies performed in tissue-simulating erythrocyte phantoms and in a murine tumor model in vivo, we present clinically relevant results which indicate that a shift toward increased hemoglobin-oxygen saturation due to improved tissue oxygenation reduces PDT treatment beam attenuation and may allow for more effective treatment of deeper lesions.; Finally, we investigate the induction of the stress protein, heat shock protein 70 (HSP70), in response to mTHPC-PDT. The studies are performed using a murine tumor cell line transfected with a plasmid containing the gene for Green Fluorescent Protein (GFP) under the control of an hsp70 promoter. We obtain increased levels of GFP fluorescence at a cellular level and in vivo in response to sub-lethal doses of mTHPC-PDT. These results demonstrate the potential of using fluorescent reporter proteins as biomarkers of PDT-induced oxidative stress.
Keywords/Search Tags:PDT, Photodynamic, Results, Sensitizer
Related items