| In recently years, as the rapid development of automobile industry, many automobile enterprises are making great efforts to shorten development cycle and diminish production cost.Multi-position progressive die, as an important process equipment of automobile structure production, its cost and quality has a significant impact on research and development. Because of progressive die develops in the direction of large-scale, complex and precise and wide use of high strength steel,the die often becomes too thick.It is difficult to find the reasonable distribution of materials, and it is not easy to obtain the ideal economic and safe design scheme when adopt the traditional die design method.So, it have certain practical value and engineering significance to strengthen the research on the structure analysis and optimization design of die structure and realize the lightweight design of die structure.In this thesis, regarding multi-position progressive die of the car trunk bracket as the research object, the process design of automotive trunk bracket, the finite element simulation technology of forming and blanking procedure in multi-position progressive stamping process, the analytical method about matrix structure of progressive die, the topology optimization technology about matrix structure of progressive die were studied respectively. The main research contents and conclusions of this paper are summarized as follows:(1)One-step formability analysis and blank design was accomplished by using inverse approach method. The 18-positions progressive stamping processes for manufacturing the part was determined, and the single-row layout with intermediate carrier of uniform width was finally designed. Then the overall structure of progressive die was designed.(2)The numerical simulation of the forming process of the multi position progressive die stamping process for the part is carried out in Dynaform. The simulation results are obtained, which meet the requirements of the process. After the numerical simulation of the stamping forming process,then the force of the die in the process of stamping forming was obtained.(3)Finite element numerical simulation for all the blanking process with Deform software.The blank is meshed and refined in order to reduce the scale of the model. The fracture factors of the parts are obtained by means of the combination of blanking experiments and simulation.And then the blanking process of the die was simulated to get the blanking force on the sheet.The blanking force is calculated and the results are compared with the numerical simulation results. The results show that the relative error between the simulation results and the theoretical calculation results is less than 15%.(4) The die structure analysis model is established with the load mapping method, and the contact force between the deformation plate and the die surface was mapped to the finite element model of the die structure,and the elastic deformation of dies in different conditions was obtained.(5)Based on the analysis of the structure of the die, the OptiSturct software was used to optimize the structure of the die. Reconstructed the initial results obtained after the iterative calculation, and get the new die structure, UG software was used to optimized reconstruction for die base structure.Weight loss is about 22.4% compared with the traditional die structure. |