Font Size: a A A

Nanomechanics modeling of carbon nanotubes interacting with surfaces in various configurations

Posted on:2014-07-11Degree:Ph.DType:Thesis
University:Northeastern UniversityCandidate:Wu, Yu-ChiaoFull Text:PDF
GTID:2451390005489818Subject:Engineering
Abstract/Summary:
Carbon nanotubes (CNTs) have been widely used as potential components in reported nanoelectromechanical (NEM) devices due to their excellent mechanical and electrical properties. This thesis models the experiments by the continuum mechanics in two distinct scenarios.;In the first situation, measurements are made of CNT configurations after manipulations. Modeling is then used to determine the interfacial properties during the manipulation which led to the observed configuration. This technique is used to determine the shear stress between a SWNT bundle and other materials. During manipulation, a SWNT bundle slipped on two micro-cantilevers. According to the slack due to the slippage after testing and the device configuration, the shear stress between a SWNT bundle and other materials can be determined. In another model, the work of adhesion was determined on two accidentally fabricated devices. Through the configuration of two SWNT adhered bundles and the force-distance curves measured by an atomic force microscope (AFM), modeling was used to determine the work of adhesion between two bundles and the shear stress at the SWNT-substrate interface.;In the second situation, modeling is used in a more traditional fashion to make theoretical predictions as to how a device will operate. Using this technique, the actuation mechanism of a single-trench SWNT-based switch was investigated. During the actuation, the deflection-induced tension causes the SWNT bundle to slip on both platforms and to be partially peeled from two side recessed electrodes. These effects produce a slack which reduces the threshold voltages subsequent to the first actuation. The result shows excellent agreement between the theory and the measurement. Furthermore, the operation of a double-trenched SWNT-based switch was investigated. A slack is produced in the 1st actuated trench region by the slip and peeling effects. This slack reduces the 2nd actuation voltage in the neighbor trench. Finally, the adhesive slip process at the SWNT-substrate interface was simulated. The result shows that the force for slip of a SWNT remains constant for lengths less than about 240 nm. Beyond that length, increasing the contact length causes increase the force for slippage. This phenomenon agrees well with reported experiments.
Keywords/Search Tags:SWNT bundle, Modeling, Used, Configuration, Slip
Related items