Font Size: a A A

First simulink benchmark for off-line and real-time simulation of more-electric aircraft (MEA) electrical power system

Posted on:2012-05-17Degree:M.Sc.AType:Thesis
University:Ecole Polytechnique, Montreal (Canada)Candidate:Montealegre Lobo, LeonardoFull Text:PDF
GTID:2452390008495613Subject:Engineering
Abstract/Summary:
Conventional aircrafts use hydraulic, mechanical, pneumatic and electrical energy sources to supply their systems. In order to increase the efficiency of such systems, it is needed to increase the penetration level of electrical systems and components in aircrafts for generating, distributing and utilizing electrical power. An important step is to develop numerical models for studies related to the conception, design and testing stages. Mathematical modeling and simulation tools constitute an efficient approach for predicting operational behaviour, correcting design errors, eliminating prototyping steps and reducing component and overall testing cycles. Simulation tools can increase system robustness while reducing expensive ground and flight tests on the actual aircraft. Moreover, simulation tools offer limitless options for studying huge numbers of operational scenarios and detecting failure conditions. Modern simulation tools for electrical circuits and systems have become very sophisticated and, if data is available, can be used to create extremely precise models for components and complete systems. Real-time simulation tools allow testing actual physical components (hardware-in-the-loop) and can be used to validate models and derive model parameters.;This research presents an initial benchmark for the simulation and analysis of the Bombardier Global Express aircraft electrical power system. Both for off-line and real-time simulations are considered. The considered tools are Simulink for off-line simulations and the Opal-RT simulator (based on Simulink) for real-time simulations. These tools allow achieving advanced models and testing the aircraft system in a high scope of scenarios. The research identifies modeling bottlenecks and data needs, establishes validation needs and proposes measurement tests for qualifying component models. It is established that the real-time simulation of the developed power system is particularly complex. An available and new real-time simulation method is tested at the end and demonstrates the need for further research.
Keywords/Search Tags:Simulation, Electrical, Aircraft, System, Simulink, Off-line
Related items