Font Size: a A A

A technique for determining viable military logistics support alternatives

Posted on:2010-11-11Degree:Ph.DType:Thesis
University:Georgia Institute of TechnologyCandidate:Hester, Jesse StuartFull Text:PDF
GTID:2446390002976156Subject:Engineering
Abstract/Summary:
A look at today's US military will see them operating much beyond the scope of protecting and defending the United States. These operations now consist of, but are not limited to humanitarian aid, disaster relief, peace keeping, and conflict resolution. This broad spectrum of operational environments has necessitated a transformation of the individual military services to a hybrid force that is attempting to leverage the inherent and emerging capabilities and strengths of all those under the umbrella of the Department of Defense (DOD), this concept has been coined Joint Operations.;Supporting Joint Operations requires a new approach to determining a viable military logistics support system. The logistics architecture for these operations has to accommodate scale, time, varied mission objectives, and imperfect information. Compounding the problem is the human in the loop (HITL) decision maker (DM) who is a necessary component for quickly assessing and planning logistics support activities. Past outcomes are not necessarily good indicators of future results, but they can provide a reasonable starting point for planning and prediction of specific needs for future requirements.;Adequately forecasting the necessary logistical support structure and commodities needed for any resource intensive environment has progressed well beyond stable demand assumptions to one in which dynamic and nonlinear environments can be captured with some degree of fidelity and accuracy. While these advances are important, a holistic approach that allows exploration of the operational environment or design space does not exist to guide the military logistician in a methodical way to support military forecasting activities. To bridge this capability gap, a method called Adaptive Technique for Logistics Architecture Solutions (ATLAS) has been developed. This method provides a process that facilitates the use of techniques and tools that filter and provide relevant information to the DM. By doing so, a justifiable course of action (COA) can be determined based on a variety of quantitative and qualitative information available.;This thesis describes and applies the ATLAS method to a notional military scenario that involves the Navy concept of Seabasing and the Marine Corps concept of Distributed Operations applied to a platoon sized element. The small force is tasked to conduct deterrence and combat operations over a seven day period. This work uses modeling and simulation to incorporate expert opinion and knowledge of military operations, dynamic reasoning methods, and certainty analysis to create a decisions support system (DSS) that can be used to provide the DM an enhanced view of the logistics environment and uses variables that impact specific measures of effectiveness.;The results from applying the ATLAS method provide a better understanding and ability for the DM to conduct the logistics planning/execution more efficiently and quickly. This is accomplished by providing relevant data that can be applied to perform dynamic forecasting activities for the platoon and aids in determining the necessary support architecture to fulfill the forecasted need.
Keywords/Search Tags:Military, Support, Logistics, Determining
Related items