An Optical Study of Ice Grain Boundaries | | Posted on:2011-05-11 | Degree:Ph.D | Type:Dissertation | | University:Yale University | Candidate:Thomson, Erik S | Full Text:PDF | | GTID:1449390002466978 | Subject:Geophysics | | Abstract/Summary: | PDF Full Text Request | | The equilibrium phase geometry and evolution of polycrystals underlies the nature of materials. In particular, grain boundaries dominate the total interfacial area within polycrystalline materials. Our experimental studies are motivated by the importance of the structure, evolution, and thermodynamic behavior of grain boundaries near bulk melting temperatures. Ice is singled out as a material of interest due to its geophysical importance and its advantageous optical properties.;An experimental apparatus and light reflection technique is designed to measure grain boundary melting in ice bicrystals, in thermodynamic equilibrium The technique allows continuous monitoring of reflected light intensity from the grain boundary as the temperature and solutal composition are systematically varied. For each sample the individual crystal orientations are also measured. The type and concentration of impurity in the liquid is controlled and the temperature is continuously recorded and controlled over a range near the melting point. An optical model of the interface is developed in order to convert experimental reflection data into a physical measurement of the liquidity of the grain boundary. Solutions are found for reflection and transmission amplitude coefficients for waves propagating from an arbitrarily oriented uniaxial anisotropic material into an isotropic material. This general model is used to determine solutions for three layer, ice/water/ice, systems with crystals of arbitrary orientation, and is broadly applicable to layered materials.;Experimental results show thicker grain boundary liquid layers than expected from classical colligative effects. A physically realistic model of intermolecular interactions succeeds in bounding the measurements. These measurements may have important implications for understanding a wide range of effects in polycrystalline materials. Likewise, the experimental techniques and optical theory may be applied to other systems of broad scientific significance. | | Keywords/Search Tags: | Grain, Optical, Materials, Experimental, Ice | PDF Full Text Request | Related items |
| |
|